Keppel Data Centres Holding and Mitsubishi Heavy Industries Asia Pacific have signed a memorandum of understanding to research the possibility of implementing a hydrogen powered tri-generation plant in Singapore.
Liquid Wind
Technology, Industrial Capture, Synthetic hydrocarbons, Post-combustion, Pre-combustion, Short-term Recycling, ALL, In Planning
Liquid Wind will develop, finance, build and manage standardised facilities that produce e-methanol from renewable electricity and upcycled carbon dioxide.
Weizmann Institute of Science
Atmospheric Capture, Food and beverage, Technology, Synthetic hydrocarbons, Short-term Recycling, Lab, ALL
E. coli bacteria have been gradually trained to use carbon dioxide as food, rather than sugar, building their biomass from the air.
Steeper Energy – Hydrofaction™
Atmospheric Capture, BECCS, Technology, Synthetic hydrocarbons, Short-term Recycling, Demonstration
Hydrofaction™ is Steeper Energy’s proprietary implementation of hydrothermal liquefaction which applies supercritical water as a reaction medium for the conversion of biomass directly into a high-energy density renewable crude oil, referred to as Hydrofaction™ Oil. Steeper’s unique process mimics and accelerates nature by subjecting wet biomass to heat and high pressure.
SoCalGas Power-to-Gas
Synthetic hydrocarbons, Short-term Recycling, Pilot, ALL
Research part of SoCalGas’ development of technologies known as poser-to-gas (P2G), a method of storing excess renewable energy.
ECRA CCS Project
Industrial Capture, Synthetic hydrocarbons, Post-combustion, Pilot, ALL
Long-term project to assess the economic and technical feasibility of CCS for the cement industry.
Hydrogen 2 Magnum (H2M)
Synthetic hydrocarbons, Industrial Capture, Post-combustion, Short-term Recycling, ALL, In Planning
Natural gas hydrogen production plant with carbon capture.
Buggenum Pilot Project
Industrial Capture, Synthetic hydrocarbons, Pre-combustion, ALL, Complete
Pilot plant at the Willem-Alexander power plant from 2011-2013.
Swayana Mpumalang
Synthetic hydrocarbons, Industrial Capture, Post-combustion, Short-term Recycling, ALL, In Planning
Using Lanzatech’s technology to capture CO2 from a ferralloy plant in South Africa.
West Cliff Colliery VAM Project
Fugitive Emissions Capture, Mine mouth/ventilation air methane, Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
World’s first commercial-scale power plant using VAM as primary fuel.
Baard Energy Clean Fuels
Industrial Capture, Synthetic hydrocarbons, Post-combustion, Short-term Recycling, Demonstration, ALL
Coal and biomass to liquids.
DKRW Energy (Medicine Bow, WY)
Industrial Capture, Synthetic hydrocarbons, Post-combustion, Short-term Recycling, Demonstration, ALL
Coals to liquids.
New Zealand Steel – LanzaTech Steel Plant
Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
LanzaTech’s pilot steel plant location, now fully operational, near Auckland, New Zealand.
Mitsui Group – Gas Fermentation
Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
Uses LanzaTech’s gas fermentation technology throughout the Mitsui Group to convert CO2 to ethanol.
Shougang Group Steel Mill – Gas Fermentation
Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
Shougang steel mill outside of Beijing, China; World’s first commercial deployment of gas fermentation technology. Converts CO₂ to ethanol. 100,000 gallon/year plant.
Baosteel Plant
Synthetic hydrocarbons, Short-term Recycling, Pilot, ALL
Baosteel steel plant outside of Shanghai, China; Demonstration of LanzaTech technology at Baosteel steel plant, 100,000 gallons/year.
IndianOil Gas-to-Bioethanol Project (Hayrana)
Plastics, Synthetic hydrocarbons, Long-term Storage, Short-term Recycling, ALL
Project in Hayrana, India at IndianOil refinery; In 2017, IOC and LanzaTech signed a Statement of Intent to construct the world’s first refinery off gas-to-bioethanol production facility in India.
ArcelorMittal Bioethanol Project – Ghent, Belgium
Plastics, Synthetic hydrocarbons, Long-term Storage, Short-term Recycling, Commercial, ALL
Project in Ghent, Belgium at ArcelorMitttal plant; Convert CO₂ to bioethanol to be used for transportation fuel or plastics.
Evonik Specialty Plastics
Plastics, Synthetic hydrocarbons, Long-term Storage, Short-term Recycling, Lab, ALL
Research w/ Lanzatech on using syngas to develop specialty plastics; Combines Evonik’s biotechnology platforms w/ LanzaTech’s synthetic biology & gas fermentation expertise for the development of a route to bio-processed precursers for specialty plastics from waste derived synthesis gas.
U.S. Defense Advanced Research Projects Agency (DARPA) Gas-to-Jet Project
Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
U.S. government project for gas-to-jet technology; Partnered w/ Lanzatech to optimize its ethanol process to reduce the cost of jet fuel for the military in support of the military’s goal to reduce its carbon footprint.
Aemetis Feed Plant
Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
60 million gallon per year ethanol and 420,000 ton animal feed plant in California; Conversion of agricultural waste, forest waste, dairy waste, and construction and demolition waste (CDW) to ethanol.
Virgin Atlantic Renewable Jet Fuel
Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
Partnered w/ Lanzatech for aviation fuel technology, which uses waste industrial gases from steel facilities that is captured, fermented and chemically converted for jet fuel.
Valorisation Carbone Quebec Project
Industrial Capture, Synthetic hydrocarbons, Long-term Storage, Process chemicals, Post-combustion, Permanent Sequestration, Short-term Recycling, Pilot, ALL
Supported by a $15 M grant from the Quebec government, led by CO₂ Solutions; The objective of the VCQ project is to develop and demonstrate commercially viable end-to-end solutions to capture and utilize CO₂ in various applications while at the same time reducing greenhouse gas (GHG) emissions
Earth Energy (EE) & American Green Gasoline (AGG) Project
Synthetic hydrocarbons, Process chemicals, Short-term Recycling, Pilot, ALL
Organized to develop profitable commercial ventures that add value to alcohol production, bioprocessing, and/or use CO₂ and other waste streams as inputs into production of biofuels, chemicals, and high value products.
Coyote Canyon Landfill Energy Redevelopment
Fugitive Emissions Capture, Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
Using landfill gas for a fuel cell project to produce renewable electricity and hydrogen.
Algenol
Synthetic hydrocarbons, Short-term Recycling, Commercial, ALL
Biorefinery of waste CO2 into biofuels using algae.
C2B Project
Synthetic hydrocarbons, Industrial Capture, Post-combustion, Short-term Recycling, Lab, ALL
Project aimed at the continuous capture of CO2 from flue gas coming from coal-fired plants and its regeneration as pure CO2 in the production of hydrocarbonate.
Nordic Blue Crude
Synthetic hydrocarbons, Short-term Recycling, ALL
Planning a facility that will produce high-quality, carbon neutral, synthetic fuels to replace fossil fuels.
Power-to-X Kopernikus Project- Germany
Atmospheric Capture, Direct Air Capture, Synthetic hydrocarbons, Lab, ALL
The plant captures CO2 from ambient air in a cyclic process.
Soletair- Finland
Atmospheric Capture, Direct Air Capture, Synthetic hydrocarbons, Process chemicals, Demonstration, ALL
100% renewable energy powers direct air capture.
Colorado School of Mines
Technology, Synthetic hydrocarbons, Short-term Recycling, Lab, ALL
CO₂-to-fuels through novel electrochemical catalysis; Modular and scalable reactor that economically upgrades CO₂ into fuels and chemicals; Integrates carbon-carbon-coupling catalysts developed at the National Renewable Energy Laboratory with emerging proton-conducting ceramic membranes to directly produce synthetic fuels and high-value chemicals from CO₂ feedstocks.
Precision Combustion, Inc. – CO2 to Fuels
Technology, Synthetic hydrocarbons, Short-term Recycling, Lab, ALL
Uses intermittent solar power by employing a multi-functional material (calcium carbonate; CaCO3). This material enables the alternating capture and release of solar energy, while simultaneously converting carbon dioxide (CO2) and methane (CH4) to syngas, which is then readily convertible into a range of chemicals or fuels. The conversion process will make use of DOE’s concentrated solar power technology.
Mainstream Engineering Corporation
Technology, Synthetic hydrocarbons, Process chemicals, Short-term Recycling, Lab, ALL
Developing an electrosynthesis process that utilizes CO₂ from coal flue gas to produce fuels or chemical precursors, including carboxylic acids. Carboxylic acids are valuable and important precursors used in polymers, pharmaceuticals, agrochemicals, and cosmetics.
University of Kentucky Research Foundation
Atmospheric Capture, BECCS, Biodegradable plastics, Technology, Synthetic hydrocarbons, Process chemicals, Short-term Recycling, Lab, ALL
Microalgae-based process to convert carbon dioxide (CO2) from coal-fired flue gas to value-added products utilizing a dual photobioreactor (PBR)/pond cultivation strategy.
Gas Technology Institute (GTI) – CO2 to Syngas
Technology, Synthetic hydrocarbons, Short-term Recycling, Pilot, ALL
GTI and Missouri University of Science and Technology to develop a novel catalytic reactor to turn CO₂ to synthetic gas. The catalytic reactor will contain nano-engineered catalyst, deposited on high packing-density hollow fibers.
TDA Research Fuels
Technology, Synthetic hydrocarbons, Short-term Recycling, Lab, ALL
CO2 conversion to fuel; New sorbent-based process that can convert CO2 captured from power plants (or other large sources) by reducing it with methane and water into a mixture of carbon monoxide and hydrogen
Global CO2 Initiative (University of Michigan)
Carbon fibers, Technology, Cement, Industrial Capture, Plastics, Synthetic hydrocarbons, Long-term Storage, Polymers, Process chemicals, Post-combustion, Synthetic materials, Short-term Recycling, Lab, ALL
The Global CO2 Initiative at the University of Michigan aims to identify and pursue commercially sustainable approaches that reduce atmospheric CO2 levels by 4 gigatons/year.
Carbon Engineering – AIR TO FUELS™
Atmospheric Capture, Technology, Direct Air Capture, Synthetic hydrocarbons, Demonstration, ALL
AIR TO FUELS™ technology combines Carbon Engineering’s Direct Air Capture (DAC) technology with several other advancing technologies, such as renewable energy, water electrolysis and fuels synthesis, to produce liquid hydrocarbon fuels.
Carbon Engineering – Direct Air Capture
Atmospheric Capture, Enhanced oil recovery, Technology, Geologic formations, Saline formations, Synthetic hydrocarbons, Direct Air Capture, Permanent Sequestration, Demonstration, ALL
Carbon Engineering’s direct air capture process separates CO2 from atmospheric air in a four-step process.
Red Trail Energy Ethanol Plant
BECCS, Industrial Capture, Synthetic hydrocarbons, Short-term Recycling
Researching next-gen gasification for biomass & higher efficiency technologies; Implement commercial CCS at an ethanol production facility to make a fuel that qualifies for low-carbon fuel programs; Operational by 2019 or 2020.
Catalytic Innovations
Technology, Synthetic hydrocarbons, Short-term Recycling, Lab, ALL
Uses electricity to rearrange the atoms in water and CO₂ to produce ethanol and oxygen.
Agroetanol Ethanol Plant
BECCS, Industrial Capture, Synthetic hydrocarbons, Short-term Recycling
Europe’s largest bioethanol produce; Working with Biorecro to develop Europe’s 1st carbon negative BECCS plant.
American Green Gasoline (AGG) Biofuels
Technology, Synthetic hydrocarbons, Short-term Recycling, ALL
Converts CO₂ emissions from biorefineries, power plants, and other facilities into syngas that can be used for transportation fuels, power generation, process heat, and other products.
Decatur Project (Illinois Industrial Carbon Capture and Storage Project)
BECCS, Industrial Capture, Synthetic hydrocarbons, Short-term Recycling, Pilot, ALL
Storage in saline aquifer; First large-scale application of BECCS, located at ADM’s bioethanol plant; Uses Alstom-Dow Advanced Amine Process.
Greyrock – Direct Fuel Production
Technology, Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
Uses natural gas, natural gas liquids, flare gas, CO₂, and waste gasses from industrial plants as feedstock to produce clean liquid transportation fuels. Greyrock’s catalyst eliminates the “wax refining” step associated with traditional Fischer-Tropsch.
Mattershift
Atmospheric Capture, Technology, Direct Air Capture, Synthetic hydrocarbons, Short-term Recycling, ALL
Carbon nanotube membranes can rearrange molecules from CO2 removed from the air and convert it to fuels.
Ineratec – Power-to-Liquid
Technology, Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
In the first step, hydrogen is produced via electrolysis. This hydrogen, together with carbon dioxide, is converted into syngas in the RWGS reactor. In the Fischer-Tropsch reactor synthetic fuels and high quality chemical products are produced from syngas.
Ineratec – Power-to-Gas
Technology, Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
Electrolytically generated hydrogen from water is converted into synthetic natural gas (SNG) together with greenhouse gas CO2. With this process, long-term storage of electricity is realized, e.g. by feeding the SNG into existing pipelines. Methanation from CO/CO2 mixtures, e.g. from gasification processes, is possible as well.
Ineratec – Gas-to-Liquid
Technology, Synthetic hydrocarbons, Short-term Recycling, Demonstration, ALL
CO2 and other gases into liquid fuels and commodity chemicals with zero flaring. In the first step, syngas is produced in the CPOX reactor from methane-containing gases and air. In the second step, the syngas is converted into valuable products via the Fischer-Tropsch synthesis.
Hydrocell – Direct Air Capture
Biodegradable plastics, Atmospheric Capture, Technology, Direct Air Capture, Synthetic hydrocarbons, Process chemicals, Short-term Recycling, Demonstration, ALL
Combines Hydrocell’s HCell brush-type heat exchanger and regenerative CO₂ scrubber to capture CO₂ from ambient air.